
Review

- What are the main components of the CMN Model?
 - What are the key numbers from the CMN Model?
- What is Fitts' Law?
- Why evaluate?
- Lab vs. field studies?
- Participatory Design?
- Techniques to evaluate without users?
 - Literature review
 - Cognitive walkthrough
 - Heuristic evaluation
 - Model-based evaluation

DIS 1 — Jan Borchers _

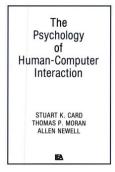
media computing group

 \Rightarrow User study and evaluation

DIS 1 — Jan Borchers_

Evaluation Techniques Evaluating Without Users **Evaluating With Users** EI Literature Review E2 Cognitive Walkthrough E3 Heuristic Evaluation E4 Model-based Evaluation (GOMS,...) **Oualitative Ouantitative** E5 Model Extraction E10 Controlled Experiments E6 Silent Observation E7 Think Aloud E8 Constructive Interaction **E9** Retrospective Testing + Interviews, guestionnaires,...

A Story


 In 1995, now-famous web guru Jakob Nielsen had less than 24 hours to recommend if adding three new buttons to Sun's home page was a good idea.

Check out his "Alertbox" online column for good (and often fun) web design advice

- He found that each new, but unused button costs visitors .5 million \$ per year.
- 2 of the 3 new buttons were taken back out.
- The method he used for his estimate: GOMS.

GOMS

Interface

media computing group

Efficiency

- Goals, Operators, Methods, Selection rules
- Card, Moran, Newell: The Psychology of HCI, 1983
- To estimate execution and learning times before a system is built

Information-theoretic

Efficiency

Character

Efficiency

E4: Model-based Evaluation

- Some models exist that offer a framework for design and evaluation
- Examples:
 - \Rightarrow Information efficiency
 - \Rightarrow GOMS KLM, GOMS
 - Design Rationale (History of design decisions with reasons and alternatives)
- Design Patterns

DIS 1 — Jan Borchers	5	media computing group 📰 🔍	DIS 1 — Jan Borchers	6	media computing group 📲

Measuring Interface Efficiency

0	Word has finished searching the document.
	OK

- How fast can you expect an interface to be?
- Information as quantification of amount of data conveyed by a communication (Information theory)
- E.g., speech, messages sent upon click...
- Lower bound on amount of information required for task is independent of interface design
- Information-theoretic efficiency $E = \frac{\text{Minimal info required for the task}}{\text{Info supplied by user}}$
 - $E \in [0, 1]$ (e.g., E = 0 for providing unnecessary information)
- Character efficiency = Minimal number of characters required for the task Number of characters entered in the UI

DIS 1 – Jan Borchers

Minimal information content

KLM

Information Content (Detailed)

- Information is measured in bits
 - I bit represents choice between 2 alternatives
- *n* equally likely alternatives
 - Total information amount: log₂(*n*)
 - Information per alternative: (1/n)log₂(n)
- n alternatives with different probabilities p(i)
 - Information per alternative: p(i)log₂(1/p(i))
 - Total amount = sum over all alternatives
- Consider situation as a whole
 - Probability of messages required
 - Information measures freedom of choice (information \neq meaning)

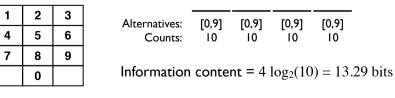
Example: NRW Area Code

- Four digits
- First digit: 0
- Second digit: 2 (70%), 5 (30%)
- Third, Fourth digits: [0, 9] with equal probability
- E.g., 0241 for Aachen, 0525 for Paderborn
- What is the minimal information content of NRW landline area code?
- Information per alternative: p(*i*)log₂(1/p(*i*))

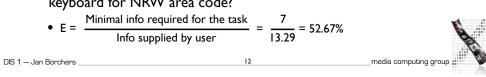
Example: NRW Area Code

• Four digits

DIS 1 - Jan Borchers

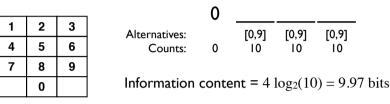

DIS 1 – J

- First digit: 0
- Second digit: 2 (70%), 5 (30%)
- Third, Fourth digits: [0, 9] with equal probability

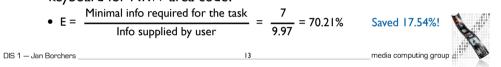

	Probability	Values	p(<i>i</i>)	p(i)log2(1/p(i)) (bits/alternative)	Tota	l bits
02XX	0.7	100	$\frac{0.7}{100} = 0.007$	$0.007 \times \log_2(1/0.007) = 0.05$	100 × 0.05 = 5	
05XX	0.3	100	$\frac{0.3}{100} = 0.003$	$0.003 \times \log_2(1/0.003)$ = 0.02	100×0.02 $= 2$	5 + 2 = 7
Borchers				<u> </u>	media	computing grou

Example: NRW Area Code

- Minimal information required: 7 bits
- What is the information content of the shown numeric keyboard for 4 digits?



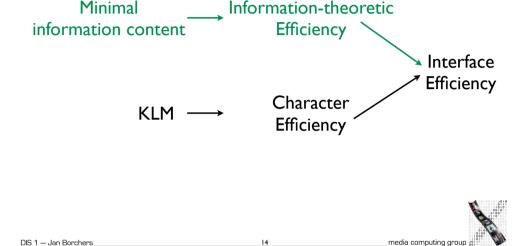
• What is the information-theoretic efficiency when you use this keyboard for NRW area code?



Example: NRW Area Code

- Minimal information required: 7 bits
- What is the information content of the shown numeric keyboard for 3 digits (because the first digit is always zero)?

• What is the information-theoretic efficiency when you use this keyboard for NRW area code?


Keystroke-Level Model

- Execution time for a task = sum of times required to perform the serial elementary gestures of the task
- Typical gesture timings
 - Keying K = 0.2 sec (tap key on keyboard, includes immediate corrections)
 - Pointing P = 1.1 sec (point to a position on display)
 - Homing H = 0.4 sec (move hand from keyboard to mouse or v.v.)
 - Mentally preparing M = 1.35 sec (prepare for next step, routine thinking)

15

- Responding R (time a user waits for the system to respond to input)
- Responding time R effects user actions
 - Causality breakdown after 100 ms
 - User will try again after 250 ms \Rightarrow R
 - Give feedback that input received & recognized

DIS 1 — Jan Borchers

Keystroke-Level Calculation

- List required gestures
 - E.g., HK = move hand from mouse to keyboard and type a letter
- Compute mental preparation times Ms
 - Difficult: user stops to perform unconscious mental operations
 - Placing of Ms described by rules
- Add gesture timings
- E.g., HMPK = H + M + P + K = 0.4 + 1.35 + 1.1 + 0.2 = 3.05 sec
- Rule terminology
 - String: sequence of characters
- Delimiter: character marking beginning (end) of meaningful unit

- Operators: K, P, and H
- Argument: information supplied to a command

Rules for Placing Ms

- Rule 0, initial insertion for candidate Ms
 - Insert Ms in front of all Ks
 - Place Ms in front of Ps that select commands, but not Ps that select arguments for the commands
- Rule I, deletion of anticipated Ms
 - Delete M between two operators if the second operator is fully anticipated in the previous one
 - $\mathsf{E.g., \mathsf{PMK}} \Rightarrow \mathsf{PK}$
- Rule 2, deletion of Ms within cognitive units (contiguous sequence of typed characters that form a name)
 - In a string of MKs that form a cognitive unit, delete all Ms except the first E.g., "Is $reltarised" \Rightarrow$ MK MK MK \Rightarrow MK K MK

DIS 1 — Jan Borchers

media computing group

Rules for Placing Ms

- Rule 3, deletion of Ms before consecutive terminators
 - If K is redundant delimiter at end of a cognitive unit, delete the M in front of it, E.g., "bladd" \Rightarrow M 3K MK MK \Rightarrow M 3K MK K
- Rule 4, deletion of Ms that are terminators of commands
 - If K is a delimiter that follows a constant string then delete the M in front of it (not for arguments or varying strings)

 $\text{E.g., ``Is} {\triangleleft} \text{''} \Rightarrow \text{M} \text{ K} \text{ K} \text{ } \text{M} \text{K} \Rightarrow \text{M} \text{ K} \text{ K} \text{ } \text{K}$

- Rule 5, deletion of overlapped Ms
 - Do not count any M that overlaps an R E.g., user waiting for computer response

Exercise: Temperature Converter

17

- Convert from degrees Fahrenheit (F) to Celsius (C) or vice versa, requests equally distributed
- Use keyboard or mouse to enter temperature
- Assume active window awaiting input, an average of four typed characters (including point and sign), and no typing errors

19

• Task: create and analyze your own interface!

10

\varTheta 🔿 🔘 🥂 Temper	rature C	onverter	
Choose which con type the temper			
Convert F to C			
O Convert C to F			
23.7	→	74.66	1

20

DIS 1 - Jan Borchers

media computing group

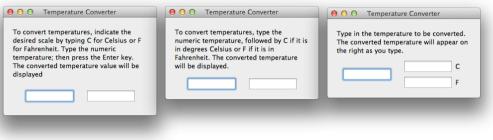
...and Its Keystroke-level Model

- Case I: select conversion direction
 - Move hand to mouse, point to desired button, click on radio button (HPK)
 - Move hands back to keyboard, type four characters, tap enter (HPKHKKKKK)

21

23

- Rule 0 (HMPMKHMKMKMKMKMK)
- Rule I, 2, 4 (HMPKHMKKKKMK)
- Estimated time = 7.15 sec
- Case 2: correct conversion direction already selected
 - MKKKKMK = 3.7 sec
- Average time = (7.15 + 3.7) / 2 = 5.4 sec


Example:

DIS 1 — Jan Borchers

Temperature Converter

- Input assumptions (given)
 - 50% Fahrenheit, 50% Degree Celsius
 - 75% positive, 25% negative
 - 10% integer, 90% decimal
 - All digits are equally likely
 - Only four characters input

Example: Temperature Converter

• Keystroke efficiency

DIS 1 — Jan Borchers

- Type C or F, value, enter: M K K K K K K M K \Rightarrow 3.9 sec (char. eff. 67 %)
- Type value, then C or F: M K K K K M K \Rightarrow 3.7 sec (char. eff. 80%)
- Bifurcated: M K K K K = 2.15 sec (char. eff. 100 %)

alternative P(i)log2(1 / P(i))

Example: Temperature Converter

Numbers	Prob.	Values	p(<i>i</i>)	Information in bits	Overall (values x information in bits)
dd	12.5%	100	0.00125	0.012	1.2
-d.d	12.5%	100	0.00125	0.012	1.2
.ddd	25%	1000	0.00025	0.003	3
d.dd	25%	1000	0.00025	0.003	3
dd.d	25%	1000	0.00025	0.003	3

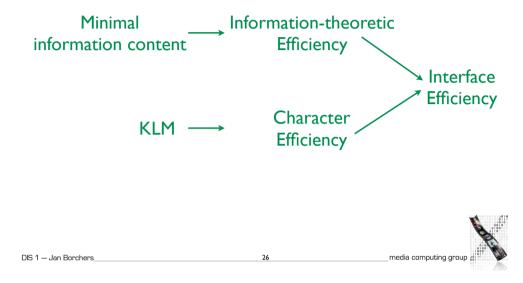
24

22

 \Rightarrow Minimal info required for the task $\,$ = 11.4 bits/message $\,$

 \Rightarrow Simple approach: $4 \log_2(12) \approx 14$ bits

Example: Temperature Converter


		11.4 bits		
 Information efficiency: E = 	Info s	upplied by user	-	
 I28 keys standard keyboard (5 	bits/key):	E = 11.4 / (4 × 5)	≈ 55%	>
• 16 keys numeric keypad:		E = 11.4 / (4 × 4)	≈ 70%	,)
12 keys dedicated keypad:		E = 11.4 / (4 × 3.5)	≈ 80%	,)
1 — Jan Borchers	25		media computir	ıg g

GOMS: Components

- Goals describe user's end goals
 - Routine tasks, not too creative/problem-solving E.g., "copyedit manuscript"
 - Leads to hierarchy of subgoals
- Operators are elementary user actions
 - Key presses, menu selection, drag & drop, reading messages, gestures, speech commands, ...
 - Assign context-independent duration (in ms)
- Methods are "procedures" to reach a goal
 - Consist of subgoals and/or operators
- Selection rules
 - Which method to use for a (sub)goal
 - E.g., to delete some text (individual preferences apply!)

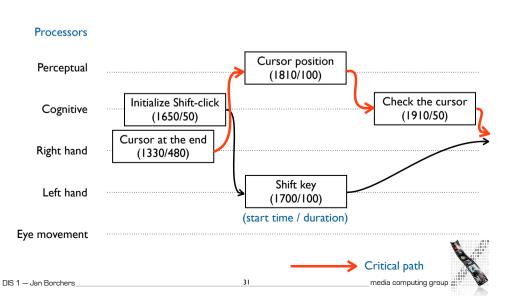
DIS 1

Sample Method and Operators

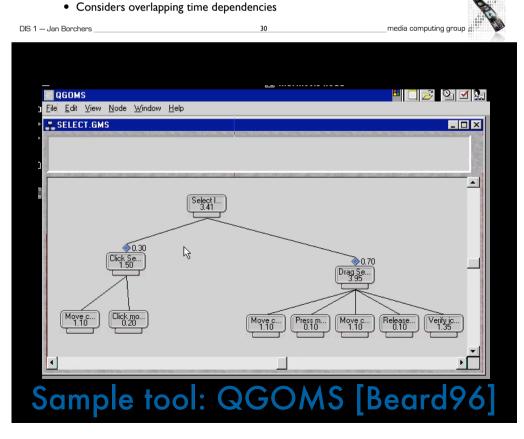
GOAL: HIGHLIGHT-ARBITRARY-TEXT

- 1. MOVE-CURSOR-TO-BEGINNING 1.10s
- 2. CLICK-MOUSE-BUTTON 0.20s
- 3. MOVE-CURSOR-TO-END I.10s
- 4. SHIFT-CLICK-MOUSE-BUTTON 0.48s
- 5. VERIFY-HIGHLIGHT I.35s

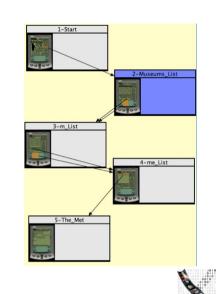
GOMS Results


- Execution (& learning) times of trained, routine users for repetitive tasks (goals), leading to cost of training, daily use, errors
 - Can be linked to other costs (purchase, change, update system), resulting in \$\$\$ answers
 - Use to model alternative system offers
 - E.g., "new NYNEX computers cost \$2M/year more" [Gray93]
- Estimate effects of redesign
 - Training cost vs. long-term work time savings
- Starting point for task-oriented documentation
 - Online help, tutorials, ...
- Don't use for casual users or new UI techniques
 - Operator times not well defined

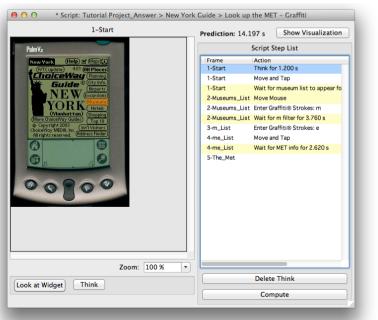
DIS 1 — Jan Borchers


CPM-GOMS Example (Excerpt)

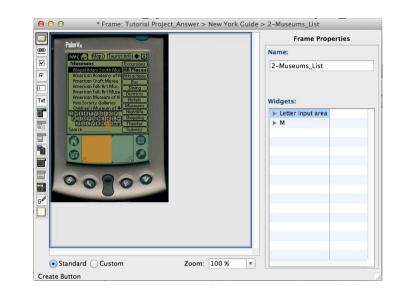
29

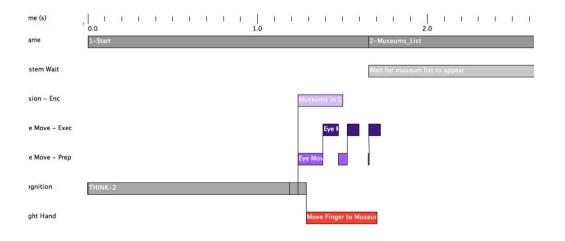

Variants of GOMS

- GOMS (Card, Moran, and Newell 1983)
- Model of goals, operators, methods, selection rules
- Predict time an experienced worker needs to perform a task in a given interface design
- Keystroke-level GOMS model (simplified version)
- Comparative analyses of tasks that use mouse (GID) and keyboard
- Correct ranking of performance times using different interface designs
- NGOMSL (natural GOMS language)
- Considers non-expert behavior (e.g., learning times)
- CPM-GOMS (critical path method)
 - Computes more accurate absolute times

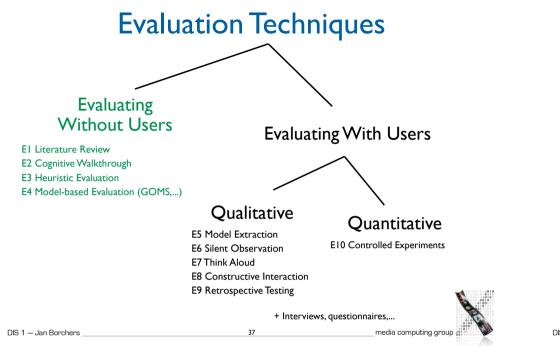

CogTool

- UI prototyping tool with predictive human performance model
 - Create different storyboards
 - Demonstrate tasks on the storyboards
 - Produce cognitive model
- Available for free, Java
- http://cogtool.hcii.cs.cmu.edu/


media computing group



33



CogTool: Defining hit zones for the UI

CogTool:Visualize interactions in a timeline

E5: Model Extraction

- Designer shows user prototype or screen shots
- User tries to explain elements and their function
- +Good to understand naïve user's conceptual model of the system

39

- Bad to understand how the system is learned over time

Evaluating with Users

- EI-E4 evaluate designs without the user
- As soon as implementations (prototypes) exist they should also be tested with users, using the following methods

E6: Silent Observation

- Designer watches user in lab or in natural environment while working on one of the tasks
- No communication during observation
- + Helps discover big problems
- No understanding of decision process (that lead to problems) or user's mental model, opinions, or feelings

E7: Think Aloud

- As E7, but user is asked to say aloud
 - What she thinks is happening (state)
 - What she is trying to achieve (goals)
 - Why she is doing something specific (actions)
- Most common method in industry

+Good to get some insight into user's thinking, but:

- Talking is hard while focusing on a task
- Feels weird for most users to talk aloud
- Conscious talking can change behavior

E8: Constructive Interaction

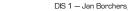
- Two people work on a task together
 - Normal conversation is observed (and recorded)
 - More comfortable than Think Aloud
- Variant of this: Different partners
- Semi-expert as "trainer", newbie as "student"
- Student uses UI and asks, trainer answers
- · Good: Gives insight into mental models of beginner and advanced users at the same time!

Recording Observations

43

41

• Paper + pencil


DIS 1 - Jan Borchers

- Evaluator notes events, interpretations, other observations
- · Cheap but hard with many details (writing is slow). Forms can help.
- Audio recording
 - Good for speech with Think Aloud and Constructive Interaction
 - But hard to connect to interface state
- Video
 - Ideal: two cameras (user + screen) in one picture
 - Best capture, but may be too intrusive initially

Silverback

EI0: Controlled Experiments

47

media computing group

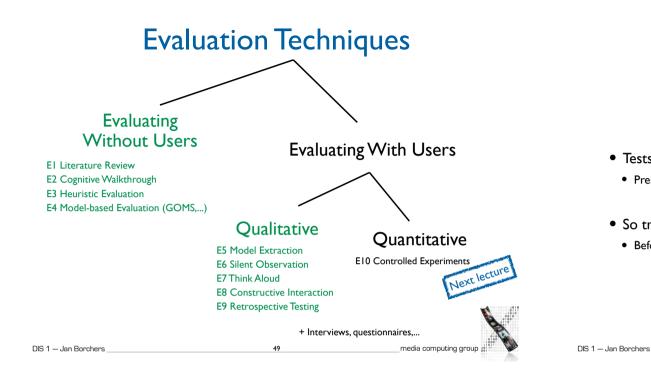
- Quantitative, empirical method
- Steps:

DIS 1 - Jan Borchers

- Formulate hypothesis
- Design experiment, pick variable and fixed parameters
- Choose subjects
- Run experiment
- More details: next lecture • Interpret results to accept or reject hypothesis

E9: Retrospective Testing

- Additional activity after an observation
- Subject and evaluator look at video recordings together, user comments his actions retrospectively
- Good starting point for subsequent interview, avoids wrong memories
- Often results in concrete suggestions for improvement


Other Evaluation Methods

- Before and during the design, with users:
 - Ouestionnaires
 - Personal interviews
- After completing a project:
- Email bug report forms
- Hotlines
- Retrospective interviews and questionnaires
- Field observations (observe running system in real use)

media computing group

DIS 1 — Jan Borchers

Before the Session

51

Dealing with Testers

- Tests are uncomfortable for the tester.
- Pressure to perform, mistakes, competitive thinking
- So treat testers with respect at all times!
 - Before, during, and after the test

During the Session

50

- Do not waste the testers' time
- Do not let them complete unnecessary tasks
- Make sure testers are comfortable
 - Early success in the task possible
 - Relaxed atmosphere
 - Breaks, coffee, ...
 - Hand out test tasks one by one
 - Never show you are unsatisfied with what the tester does
 - Avoid interruptions (cell phones, ...)
 - Abort the test if it becomes too uncomfortable
- Guarantee privacy
- Never let testers' boss (or others) watch

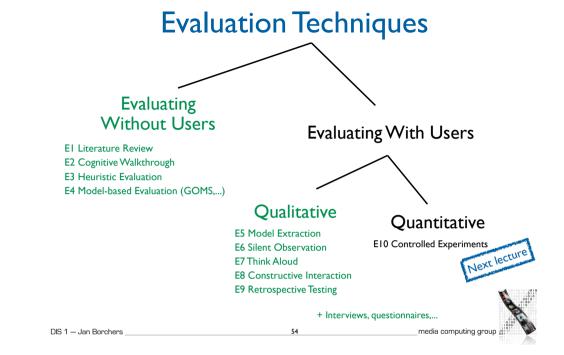
DIS 1 - Jan Borchers

• Do not waste the tester's time

- Run pilot tests before
- Have everything ready when testers arrive
- Make sure testers feel comfortable
 - Stress that the system is being tested, not them
 - Confirm that the system may still have bugs
 - Let testers know they can stop at any time

- Guarantee privacy
- Individual test results will be handled as private
- Inform tester
 - Explain what is being recorded
 - Answer any other questions (but do not bias)
- Only use volunteers (consent form)

media computing group


media computing group

After the Session

- Make sure testers are comfortable
 - Stress that tester has helped finding ways to improve the system
- Inform
 - Answer any questions that could have changed the experiment if answered before the test
- Guarantee privacy
 - Never publish results that can be associated with specific individuals
 - Show recordings outside your own group only with written consent from testers

